Записки сисадмина
Алексей Никипольский
Четверг, 02.05.2024, 20:12
 
Меню
Настройка windows XP [38]
тонкости настройки, скрытые возможности
Программирование [8]
Нюансы, примеры, мои наработки и прочая полезная информация
Защита [28]
Компьютера, данных, интернет соединений и прочая полезная информация по защите
Обзор новинок [15]
Новинки ПО и железа
Обмен опытом [20]
Заработок в сети [9]
Все виды заработка в сети интернет, обзор, анализ, рекомендации
Распознование [10]
Все о методах и способах распознавания графической информации. Взлом капчи, методы и способы анализа...
Электронные книги [4]
По PHP CSS SQL PERL программированию Всё что есть в свободном доступе в интернете на разных ресурсах.
WEB программирование [9]
Всё о программировании WEB PHP Java PERL HTTP HTML и т.п.
Взлом [6]
методика взлома, примеры взлома, способы защиты от взлома
Онлайн сервисы [2]
Полезные сервисы онлайн
Администрирование [27]
Опыт системного администрирования
Статистика
Календарь
«  Март 2012  »
ПнВтСрЧтПтСбВс
   1234
567891011
12131415161718
19202122232425
262728293031
Главная » 2012 » Март » 10 » Защита информации в персональных компьютерах
22:16
Защита информации в персональных компьютерах

Особенности защиты информации в персональных ЭВМ

Персональные компьютеры (ПК) обладают всеми свойствами ЭВМ других классов, поэтому, вообще говоря, все проблемызащиты информации в построенных на их основе системах и подходы к защите аналогичны рассмотренным выше. Однако персональным компьютерам присущ ряд таких свойств, которые, с одной стороны, благоприятствуют защите, а с другой — затрудняют ее и усложняют.
К основным из указанных свойств относятся:
• малые габариты и вес, что делает их не просто транспортабельными, а легко переносимыми;
• наличие встроенного внутреннего ЗУ большого объема, сохраняющего записанные данные после выключения питания;
• наличие сменного ЗУ большого объема и малых габаритов;
• наличие устройств сопряжения с каналами связи;
• оснащенность программным обеспечением с широкими функциональными возможностями;
• массовость производства и распространения;
• относительно низкая стоимость.
Перечисленные и некоторые другие особенности создали объективные предпосылки для массового распространения ПК практически во всех сферах деятельности современного общества, резкого повышения интенсивности циркуляции информации, децентрализации процессов ее хранения и обработки, существенного изменения структуры и содержания информационных технологий.
С точки зрения общих подходов к защите особенно существенными являются две особенности ПК. Как известно, в АСОД, базирующихся на больших ЭВМ, наряду с зашитой информации непосредственно в ЭВМ такое же решающее (если не большее) значение имеет общая организация защиты: организация и обеспечение технологических процессов циркуляции и обработки потоков информации; охрана территории, зданий и помещений; подбор, обучение и организация работы персонала и т.п.
В АСОД с большими ЭВМ основные вопросы защиты, как правило, решают специалисты-профессионалы в области защиты информации. Для персональных же ЭВМ, во-первых, вопросы общей организации защиты могут быть решены физической изоляцией (например, размещением ПК в отдельной комнате, закрываемой на замок), поэтому превалирующую роль играет внутренняя защита, во-вторых, в большинстве случаев заботу о защите информации должны проявлять сами пользователи, которые не только не являются профессионалами в области защиты, но нередко вообще имеют лишь навыки непосредственного решения ограниченного набора задач. Этими особенностями и обусловлена необходимость самостоятельного рассмотрения вопросов защиты информации в персональных ЭВМ с акцентированием внимания именно на внутренней защите.
На формирование множества возможных подходов к защите информации в ПК и выбор наиболее целесообразного из них в конкретных ситуациях определяющее влияние оказывают следующие факторы:
1) цели защиты;
2) потенциально возможные способы защиты;
3) имеющиеся средства защиты.
 
Основные цели защиты информации:
 • обеспечение физической целостности;
• обеспечение логической целостности;
• предупреждение несанкционированного получения;
• предупреждение несанкционированной модификации;
• предупреждение несанкционированного копирования.
 
Обеспечение логической целостности информации для ПК малоактуально, другие же цели применительно к ПК могут быть конкретизированы следующим образом.
 
Обеспечение физической целостности.
Физическая целостность информации в ПК зависит от целостности самой ПК, целостности дисков и дискет, целостности информации на дисках, дискетах и полях оперативной памяти. В широком спектре угроз целостности, информации в ПК следует обратить особое внимание на угрозы, связанные с недостаточно высокой квалификацией большого числа владельцев ПК. В этом плане особо опасной представляется возможность уничтожения или искажения данных на жестком диске (винчестере), на котором могут накапливаться очень большие объемы данных, самим пользователем.
Предупреждение несанкционированной модификации.
Весьма опасной разновидностью несанкционированной модификации информации в ПК является действие вредоносных программ (компьютерных вирусов), которые могут разрушать или уничтожать программы или массивы данных. Данная опасность приобретает актуальность в связи с тем, что среди владельцев ПК общепринятой становится практика обмена дискетами. В получаемой дискете может содержаться весьма неприятный сюрприз.
Предупреждение несанкционированного получения информации, находящейся в ПК.
Данная цель защиты приобретает особую актуальность в тех случаях, когда хранимая или обрабатываемая информация содержит тайну того или иного характера (государственную, коммерческую и т. п.). Возможности несанкционированного получения информации в современных ПК очень широки и разнообразны, поэтому данный вид защиты требует серьезного внимания.
Предупреждение несанкционированного копирования информации.
Актуальность данной разновидности защиты определяется следующими тремя обстоятельствами:
• накопленные массивы информации все больше становятся товаром;
• все более широкое распространение получает торговля компьютерными программами;
• накопители на гибких МД и оптические дисководы с перезаписью создают весьма благоприятные условия для широкомасштабного копирования информации ПК.
Угрозы информации в персональных ЭВМ
Применительно к защите информации в ПК справедливо практически все сказанное ранее относительно защиты ее в АСОД вообще. Естественно, это относится и к вопросу об угрозах информации. Однако специфические особенности архитектурного построения и способов использования ПК позволяют конкретизировать значительную часть угроз (каналов утечки) информации. Характерные для ПК каналы принято классифицировать по типу средств, которые используются в целях несанкционированного получения по ним информации, причем выделяются три типа средств: человек, аппаратура, программа.
Группу каналов, в которых основным средством несанкционированного получения информации является человек, составляют:
• хищение носителей информации (магнитных дисков и дискет, распечаток и т. д.);
• чтение или фотографирование информации с экрана;
• чтение или фотографирование информации с распечаток. В группе каналов, основным средством использования которых служит аппаратура, выделяют:
• подключение к устройствам ПК специальной аппаратуры, с помощью которой можно уничтожать или регистрировать защищаемую информацию;
• регистрацию с помощью специальных средств электромагнитных излучений устройств ПК в процессе обработки" защищаемой информации.
 
Наконец, третью группу каналов (основное средство использования которых — программы) образуют:
 
• программный несанкционированный доступ к информации;
• уничтожение (искажение) или регистрация защищаемой информации с помощью программных закладок или ловушек;
• чтение остаточной информации из ОЗУ;
• программное копирование информации с магнитных носителей.
 
Как известно, современные ЭВМ могут работать как локально (изолированно), так и в сопряжении с другими ЭВМ, причем как в пределах одной АСОД, так и в сопряженном режиме с другими АСОД. По способу реализации сопряжение может быть организационным (посредством машинных носителей) и техническим (посредством автоматизированного канала связи).
Тогда полный базовый перечень тех участков (мест), в которых могут находиться защищаемые данные, может быть представлен в следующем виде: системные платы ПК; накопители на гибких магнитных дисках (НГМД); ВЗУ типа «Винчестер»; дисплей; печатающее устройство; каналы сопряжения. Защите подлежат данные, находящиеся в каждом из перечисленных мест. Носители информации могут быть персонального, группового и общего использования. Для разработки мероприятий защиты информации необходимы следующие исходные характеристики элементов защиты:
 
• возможные объемы находящейся в них информации;
• возможная продолжительность пребывания информации;
• возможные угрозы информации;
• возможные средства защиты.
 
Как и для объектов защиты, значения этих характеристик для всех элементов защиты целесообразно свести в специальный каталог.
В соответствии с изложенным каждый пользователь ПК может применительно к своим условиям составить перечень потенциально возможных угроз его информации и на этой основе целенаправленно решать вопросы надежной ее защиты.
Обеспечение целостности информации в ПК.
Актуальность данного вида защиты информации в ПК носит общий характер независимо от того, какая информация обрабатывается, поэтому знания и навыки обеспечения целостности необходимы всем пользователям ПК.
Прежде всего, следует знать и помнить, что угрозы целостности информации в ПК, как и в любой другой автоматизированной системе, могут быть случайными и преднамеренными. Основными разновидностями случайных угроз являются отказы, сбои, ошибки, стихийные бедствия и побочные явления, а конкретными источниками их проявления — технические средства, программы и пользователи. С учетом современного состояния технических и программных средств ПК, а также способов и средств их использования к наиболее реальным угрозам целостности информации случайного характера следует отнести ошибки пользователей. Основными из этих ошибок являются неправильные обращения к серийным компонентам программного обеспечения.
Гораздо большую опасность целостности информации в ПК представляют преднамеренные угрозы, создаваемые людьми в злоумышленных целях. Такая угроза может быть непосредственной, если злоумышленник получает доступ к ПК, и опосредованной, когда угроза создается с помощью промежуточного носителя, чаще всего с помощью дискеты. Из преднамеренных угроз наибольшее распространение получили так называемые разрушающие программные средства (РПС): электронные вирусы, черви, троянские кони и др. Они же представляют и наибольшую опасность целостности информации в ПК. Защита ПК от несанкционированного доступа.
Как показывает практика, несанкционированный доступ (НСД) представляет одну из наиболее серьезных угроз для злоумышленного завладения защищаемой информацией в современных АСОД. Как ни покажется странным, но для ПК опасность данной угрозы по сравнению с большими ЭВМ повышается, чему способствуют следующие объективно существующие обстоятельства:
1) подавляющая часть ПК располагается непосредственно в рабочих комнатах специалистов, что создает благоприятные условия для доступа к ним посторонних лиц;
2) многие ПК служат коллективным средством обработки информации, что обезличивает ответственность, в том числе и зазащиту информации;
3) современные ПК оснащены несъемными накопителями на ЖМД очень большой емкости, причем информация на них сохраняется даже в обесточенном состоянии;
4) накопители на ГМД производятся в таком массовом количестве, что уже используются для распространения информации так же, как и бумажные носители;
5) первоначально ПК создавались именно как персональное средство автоматизации обработки информации, а потому и не оснащались специально средствами защиты от НСД.
 
В силу сказанного те пользователи, которые желают сохранить конфиденциальность своей информации, должны особенно позаботиться Об оснащении используемой ПК высокоэффективными средствами защиты от НСД.
Основные механизмы защиты ПК от НСД могут быть представлены следующим перечнем:
1) физическая защита ПК и носителей информации;
2) опознавание (аутентификация) пользователей и используемых компонентов обработки информации;
3) разграничение доступа к элементам защищаемой информации;
4) криптографическое закрытие защищаемой информации, хранимой на носителях (архивация данных);
5) криптографическое закрытие защищаемой информации в процессе непосредственной ее обработки;
6) регистрация всех обращений к защищаемой информации. Ниже излагаются общее содержание и способы использования перечисленных механизмов.
Физическая защита ПК и носителей информации.
Содержание физической защиты общеизвестно, поэтому детально обсуждать ее здесь нет необходимости. Заметим только, что ПК лучше размещать в надежно запираемом помещении, причем, в рабочее время помещение должно быть закрыто или ПК должен быть под наблюдением законного пользователя. При обработке закрытой информации в помещении могут находиться только лица, допущенные к обрабатываемой информации. В целях повышения надежности физической защиты в нерабочее время ПК следует хранить в опечатанном сейфе.
Опознавание (аутентификация) пользователей и используемых компонентов обработки информации.
В концептуальном плане решение данной задачи принципиально не отличается от аналогичной задачи, решаемой в любой АСОД:
система защиты должна надежно определять законность каждого обращения к ресурсам, а законный пользователь должен иметь возможность, убедиться, что ему предоставляются именно те компоненты (аппаратура, программы, массивы данных), которые ему необходимы.
Для опознавания пользователей к настоящему времени разработаны и нашли практическое применение следующие способы:
1) с использованием простого пароля;
2) в диалоговом режиме с использованием нескольких паролей и/или персональной информации пользователей;
3) по индивидуальным особенностям и физиологическим характеристикам человека (отпечатки пальцев, геометрия руки, голос, персональная роспись, структура сетчатки глаза, фотография и некоторые другие);
4) с использованием радиокодовых устройств;
5) с использованием электронных карточек.
 
Рассмотрим коротко перечисленные способы.
 
Распознавание по простому паролю заключается в том, что каждому зарегистрированному пользователю выдается персональный пароль, который он должен держать в тайне и вводить в ЗУ ЭВМ, при каждом обращении к ней. Специальная программа сравнивает введенный пароль с эталоном, хранящимся в ЗУ ЭВМ, и при совпадении паролей запрос пользователя принимается к исполнению. Простота способа очевидна, но очевидны и явные недостатки: пароль может быть утерян или подобран перебором возможных комбинаций, а искусный злоумышленник может проникнуть в ту область ЗУ, в которой хранятся эталонные пароли.
 
Попытки преодолеть указанные недостатки, естественно, ведут к усложнению способа.
Опознавание в диалоговом режиме может быть осуществлено по следующей схеме. В файлах механизмов защиты заблаговременно создаются записи, содержащие персонифицирующие данные пользователя (дата рождения, рост, имена и даты рождения родных и близких и т. п.) или достаточно большой и упорядоченный набор паролей. При обращении пользователя программа механизма защиты предлагает пользователю назвать некоторые данные из имеющейся записи, которые сравниваются с данными, хранящимися в файле. По результатам сравнения принимается решение о допуске. Для повышения надежности опознавания каждый раз запрашиваемые у пользователя данные могут выбираться разные. Достоинства и недостатки данного способа очевидны.
Опознавание по индивидуальным особенностям и физиологическим характеристикам может быть весьма надежным, но для его реализации необходима специальная аппаратура для съема и ввода соответствующих параметров и достаточно сложные программы их обработки и сравнения с эталоном. Все это в настоящее время вполне разрешимо, однако сопряжено с удорожанием и усложнением аппаратуры и программ ПК. В силу сказанного данный способ применительно к ПК пока не получил сколько-нибудь значительного распространения. Заманчивым по сравнительной простоте и доступности может оказаться опознавание пользователя по параметрам его работы с клавиатурой ПК (скорость набора текста, интервалы между нажатием клавиш и др.), которые тоже носят сугубо индивидуальный характер.
Опознавание по радиокодовым устройствам, как это следует из самого названия, заключается в том, что изготавливаются специальные устройства, каждое из которых может генерировать радиосигналы, имеющие индивидуальные характеристики. ПК оснащается программно-аппаратными средствами приема (например, при приближении устройства к экрану дисплея), регистрации и обработки генерируемых сигналов. Каждому зарегистрированному пользователю выдается такое устройство, а его параметры заносятся в ЗУ механизмов защиты. Надежность опознавания по данному способу может быть высокой, однако такие устройства персонифицируют владельца, а не персону, поэтому похищение устройства дает злоумышленнику реальные шансы несанкционированного доступа.
 
Опознавание по специальным идентификационным карточкам заключается в том, что изготавливаются специальные карточки, на которые наносятся данные, персонифицирующие пользователя:
 
персональный идентификационный номер, специальный шифр или код и т. п. Эти данные на карточку заносятся в зашифрованном виде, причем ключ шифрования может быть дополнительным идентифицирующим параметром, поскольку он может быть известен только пользователю, вводится им каждый раз при обращении к системе и уничтожается сразу же после использования. Опознавание по карточкам может быть очень надежным, однако для его реализации необходимы предприятия — изготовители карточек, а ПК должна быть оснащена устройством считывания данных с карточки.
 
Поскольку все это сопряжено со значительными дополнительными расходами, то данный способ опознавания оказывается эффективным при его использовании в больших территориально распределенных сетях, где он в последнее время находит все большее применение, особенно в автоматизированных банковских системах.
 
Для опознавания компонентов обработки данных, т. е. ЭВМ, ОС, программ функциональной обработки, массивов данных (такое опознавание особенно актуально при работе в сети ЭВМ), используются следующие средства:
1) специальные аппаратные блоки-приставки (для опознавания ЭВМ, терминалов, внешних устройств);
2) специальные .программы, реализующие процедуру «запрос-ответ»;
3) контрольные суммы (для опознавания программ и массивов данных).
 
Опознавание с помощью блоков-приставок заключается в том, что технические средства оснащаются специальными устройствами, генерирующими индивидуальные сигналы. В целях предупреждения перехвата этих сигналов и последующего их злоумышленного использования они могут передаваться в зашифрованном виде, причем периодически может меняться не только ключ шифрования, но и используемый способ (алгоритм) криптографического преобразования.
Программное опознавание по процедуре «запрос-ответ» заключается в том, что в ЗУ опознающего и опознаваемого объектов заблаговременно вносятся достаточно развитые массивы идентифицируемых данных. Тогда опознающий объект в диалоговом режиме запрашивает те или иные данные из массива опознаваемого объекта и сравнивает их с соответствующими данными своего массива.
 Опять-таки в целях предупреждения перехвата и злоумышленного использования передаваемых идентифицирующих данных может осуществляться их криптографическое закрытие.
 Опознавание по контрольной сумме заключается в том, что для программ и массивов данных заблаговременно вычисляются их контрольные суммы (или другие величины, зависящие от содержания опознаваемых объектов). Дальнейшая процедура опознавания очевидна.
 
Разграничение доступа к элементам защищаемой информации.
Разграничение доступа к элементам защищаемой информации заключается в том, чтобы каждому зарегистрированному пользователю предоставить возможности беспрепятственного доступа к информации в пределах его полномочий и исключить возможности превышения своих полномочий. В этих целях разработаны и реализованы на практике методы и средства разграничения доступа к устройствам ЭВМ, к программам обработки информации, к полям (областям ЗУ) и к массивам (базам) данных. Само разграничение может осуществляться несколькими способами, а именно:
1) по уровням (кольцам) секретности;
2) по специальным спискам;
3) по так называемым матрицам полномочий;
4) по специальным мандатам.
Приведем краткую характеристику перечисленных способов. Разграничение доступа по уровням (кольцам) секретности заключается в том, что защищаемые данные распределяются по массивам (базам) таким образом, чтобы в каждом массиве (каждой базе) содержались данные одного уровня секретности (например, только с грифом «конфиденциально», или только «секретно», или только «совершенно секретно», или каким-либо другим).
Каждому зарегистрированному пользователю предоставляется вполне определенный уровень допуска (например, «секретно», «совершенно секретно» и т. п.). Тогда пользователю разрешается доступ к массиву (базе) своего уровня и массивам (базам) низших уровней и запрещается доступ к массивам (базам) более высоких уровней.
 Разграничение доступа по специальным спискам заключается в том, что для каждого элемента защищаемых данных (файла, базы, программы) составляется список всех тех пользователей, которым предоставлено право доступа к соответствующему элементу, или, наоборот, для каждого зарегистрированного пользователя составляется список тех элементов защищаемых данных, к которым ему предоставлено право доступа.
 Разграничение доступа по матрицам полномочий предполагает формирование двумерной матрицы, по строкам которой содержатся идентификаторы зарегистрированных пользователей, а по столбцам — идентификаторы защищаемых элементов данных. Элементы матрицы содержат информацию об уровне полномочий соответствующего пользователя относительно соответствующего элемента. Например, при размерах элементов матрицы в два бита их содержание может быть следующим: 00 — доступ запрещен, 01 — разрешено только чтение, 10 — разрешена только заспись, 11 — разрешены и чтение и запись.
 
 Недостатком метода разграничения доступа на основе матрицы полномочий является то, что с увеличением масштаба ВС данная матрица может оказаться слишком громоздкой. Преодолеть данный недостаток можно путем применения следующих рекомендаций по сжатию матрицы установления полномочий:
• объединение пользователей, имеющих идентичные полномочия, в группы;
• объединение ресурсов, полномочия на доступ к которым совпадают;
 Комбинирование метода разграничения доступа на основе матрицы полномочий с методом разграничения по уровням секретности.
 Разграничение доступа по мандатам есть способ разового разрешения на допуск к защищаемому элементу данных. Заключается он в том, что каждому защищаемому элементу присваивается персональная уникальная метка, после чего доступ к этому элементу будет разрешен только тому пользователю, который в своем запросе предъявит метку элемента (мандат), которую ему может выдать администратор защиты или владелец элемента.
 
Криптографическое закрытие защищаемой информации, хранимой на носителях.

Данный механизм, как следует из самого названия, предназначается для обеспечения защиты информации, которая подлежит продолжительному хранению на машинных носителях. Но при разработке методов его реализации имелась в виду и еще одна весьма важная цель — уменьшение объемов ЗУ, занимаемых хранимой информацией. Указанные цели и выступают в качестве основных критериев при поиске оптимальных вариантов решения задачи архивации данных.
Для предупреждения несанкционированного доступа к хранимой информации могут и должны использоваться все три рассмотренных выше механизма. Но особенно эффективными являются методы криптографического преобразования информации, поэтому они составляют основу практически всех известных механизмов архивации. Уменьшение объемов ЗУ достигается применением так называемых методов сжатия данных, сущность которых заключается в использовании таких систем кодирования архивируемых данных, которые при сохранении содержания информации требуют меньшего объема памяти носителя. Но тогда естественной представляется идея выбора такого способа кодирования, который удовлетворял бы обоим требованиям: обеспечивал бы уменьшение объема ЗУ и обладал бы требуемой надежностью криптографической защиты.
 
Классическим примером такого способа кодирования может служить достаточно известный код Хаффмена, суть которого заключается в том, что для кодирования часто встречающихся символов (букв) используются более короткие кодовые комбинации, чем для кодирования редко встречающихся. Нетрудно видеть, что если таблицу кодирования держать в секрете, то закодированный таким образом текст будет не только короче исходного, но и недоступен для чтения посторонними лицами. Криптографическое закрытие защищаемой информации в процессе непосредственной ее обработки.
Назначение указанного метода очевидно, а целесообразность применения определяется возможностями несанкционированного доступа к защищаемой информации в процессе непосредственной обработки.

Если же обработка информации осуществляется в сетевой среде, то без применения криптографических средств надежное предотвращение несанкционированного доступа к ней практически не может быть обеспечено. Этим и обусловлено то достаточно большое внимание, которое уделяется разработке криптографических средств, ориентированных на применение в ПК.
 Для иллюстрации приведем краткое описание одной из серий криптографических устройств, получившей название «КРИПТОН».
 КРИПТОН — это ряд выполненных в виде одноплатных устройств программно-аппаратных комплексов, обеспечивающих шифрование и дешифрование информации в ЭВМ и в информационно-вычислительных сетях. Устройства содержат датчики случайных чисел для генерации ключей и узлы шифрования, реализованные аппаратно в специализированных однокристальных микроЭВМ. Открытый интерфейс позволяет внедрять устройства КРИПТОН в любые системы и дополнять программным обеспечением специального назначения.
Устройства КРИПТОН позволяют осуществлять:
• шифрование и дешифрование файлов, групп файлов и разделов дисков;
• разграничение и контроль доступа к компьютеру;
• защиту информации, передаваемой по открытым каналам связи и сетям межмашинного обмена;
• электронную подпись документов;
• прозрачное шифрование жестких и гибких дисков. Для криптографического преобразования защищаемых данных использован алгоритм отечественного стандарта ГОСТ 28147—89. Длина ключа — 256 бит, причем предусмотрено 7 типов ключевых систем, любую из которых пользователь может выбрать по своему усмотрению. Конкретные ключи в пределах выбранного типа ключевой системы пользователь может изготовить самостоятельно или заказать в специализированном центре. КРИПТОН работает в среде MS DOS версии 3.0 и выше.
 
На базе устройств КРИПТОН разработана и серийно выпускается система КРИПТОНИК, обеспечивающая дополнительно к перечисленным выше функциям также чтение, запись и защиту данных, хранящихся на так называемых интеллектуальных идентификационных карточках, получающих в последнее время широкое применение как в виде дебетно/кредитных карточек при безналичных расчетах, так и в виде средства хранения прав доступа, ключей шифрования и другой конфиденциальной информации.
 
Регистрация всех обращений к защищаемой информации.
Регистрация обращений к защищаемой информации ПК позволяет решать ряд важных задач, способствующих существенному повышению эффективности защиты, поэтому оно непременно присутствует во всех системах защиты информации.
Основные задачи, при решении которых заметную роль играет регистрация обращений, могут быть представлены следующим перечнем:
• контроль использования защищаемой информации;
• выявление попыток несанкционированного доступа к защищаемой информации;
• накопление статистических данных 6 функционировании систем защиты.
 
Вообще говоря, регистрация обращений может быть осуществлена серийными средствами операционных систем ПК. Однако, учитывая специфичность и избирательность необходимой регистрации в системах защиты, разработчики этих систем предпочитают создавать свои версии программ регистрации.
 
 Проведенное рассмотрение вопросов предупреждения несанкционированного доступа достаточно убедительно показывает, что они, во-первых, составляют основу систем защиты информации в ПК, а, во-вторых, что их реализация сопряжена с решением широкого спектра разноплановых задач. Теоретические исследования и практический опыт показали, что наиболее эффективным способом их решения является создание комплексных систем защиты ПК от несанкционированного доступа.
 
Приведем краткое описание одной из наиболее распространенных систем защиты информации, разработанной в ЦНИИ Атоминформ и получившей название «Снег-2.0». Система состоит из подсистем управления доступом, регистрации и учета и криптографической.
Подсистема управления доступом осуществляет следующие функции:
1) идентификацию и проверку подлинности субъектов доступа при входе в систему по идентификатору (коду) и паролю временного действия длиной до восьми буквенно-цифровых символов;
2) идентификацию внешних устройств ПК по физическим адресам (номерам);
3) идентификацию программ, томов, каталогов, файлов по именам;
4) контроль доступа субъектов к защищаемым ресурсам в соответствии с матрицей доступа;
5) управление потоками информации с помощью меток конфиденциальности. При этом уровень конфиденциальности накопителей должен быть не ниже уровня конфиденциальности записываемой на них информации.
 
Подсистема регистрации и учета осуществляет следующие функции.
 
 а) Регистрацию входа субъектов доступа в систему, причем в параметрах регистрации указываются:
• время и дата входа субъекта доступа в систему;
• результат попытки входа: успешная или неуспешная;
• идентификатор (код или фамилия субъекта), предъявленный при попытке доступа.
 6) Регистрацию выдачи печатных (графических) документов на «твердую» копию, причем выдача сопровождается автоматической маркировкой каждого листа (страницы) документа порядковым номером и учетными реквизитами с указанием на последнем листе документа общего количества листов (страниц) и автоматическим оформлением учетной карточки документа с указанием даты выдачи, учетных реквизитов, краткого содержания (наименования, вида, шифра, кода) и уровня конфиденциальности, фамилии лица, выдавшего документ, количества страниц и копий документа.
 
В параметрах регистрации указываются:
• время и дата выдачи (обращения к подсистеме вывода);
• идентификатор субъекта доступа, запросившего выдачу;
• краткое содержание (наименование, вид, шифр, код) и уровень конфиденциальности документа;
• объем фактически выданного документа (количество страниц, листов, копий) и результат выдачи: успешный (весь объем) или неуспешный.
 в) Регистрацию запуска всех программ и процессов (заданий, задач), причем в параметрах регистрации указываются:
• дата и время запуска;
• имя (идентификатор) программы (процесса, задания);
• идентификатор субъекта доступа, запр
осившего программу (процесс, задание);
• результат запуска: успешный или неуспешный.
 г) Регистрацию попыток доступа программных средств (программ, процессов, заданий, задач) к защищаемым файлам, причем в параметрах регистрации указываются:
• дата и время попытки доступа к защищаемому файлу с указанием ее результата: успешная или неуспешная;
• идентификатор субъекта доступа;
• спецификация защищаемого файла;
• имя программы (процесса, задания, задачи), осуществляющей доступ к файлу;
• вид запрашиваемой операции (чтение, запись, удаление, выполнение, расширение и т. п.).
 д) Регистрацию попыток доступа программных средств к следующим дополнительным защищаемым объектам доступа: внешним устройствам ПК, программам, томам, каталогам, файлам, причем в параметрах регистрации указываются:
• дата и время попытки доступа к защищаемому объекту с указанием ее результата: успешная или неуспешная — несанкционированная;
• идентификатор субъекта доступа;
• спецификация защищаемого объекта (логическое имя/номер);
• имя программы (процесса, задания, задачи), осуществляющей доступ к защищаемому объекту;
• вид запрашиваемой операции (чтение, запись, монтирование, захват и т. п.).
 е) Автоматический учет создаваемых защищаемых файлов, инициируемых защищаемых томов, каталогов, выделяемых для обработки защищаемых файлов, внешних устройств ПК.
 ж) Очистку (обнуление, обезличивание) освобождаемых областей оперативной памяти ПК.
 з) Сигнализацию попыток нарушения защиты.
Криптографическая система обеспечивает:
 а) шифрование всей конфиденциальной информации, записываемой на совместно используемые различными субъектами доступа (разделяемые) носители данных, с выполнением автоматической очистки областей внешней памяти, содержащих ранее не зашифрованную информацию;
 б) возможность использования разных криптографических ключей для шифрования информации, принадлежащей различным субъектам доступа (группе субъектов).
 Владельцем ПК должна осуществляться периодическая замена всех криптографических ключей, используемых для шифрования информации (перешифрования).
 Используемые средства криптографической защиты должны быть сертифицированы специальными сертификационными центрами, имеющими лицензию на проведение сертификации криптографических средств защиты.
 
 В системе «Снег 2.0» предусмотрены средства обеспечения целостности программных средств защиты и неизменности программной среды, а именно:
 а) целостность программных средств системы «Снег 2.0» проверяется по контрольным суммам всех компонентов СЗИ НСД;
 б) целостность программной среды должна обеспечиваться пользователем (владельцем) ПК, качеством программных средств, предназначенных для применения в ПК при обработке защищенных файлов.
 
Защита информации от копирования.

Защита от копирования заключается в предупреждении возможностей несанкционированного снятия копии с информации, находящейся в ОЗУ ЭВМ или на МД (гибком или жестком), в целях злоумышленного ее использования. Нетрудно видеть, что данная защита может быть представлена составной частью защиты от несанкционированного получения информации.
Выделение же ее в самостоятельный вид защиты обусловлено, главным образом, стремлением защитить авторские и коммерческие интересы разработчиков и собственников программ для ПК. Как известно, программы для ЭВМ законодательно признаны интеллектуальной собственностью, и уже вполне сформировался рынок их распространения на коммерческой основе. В условиях рыночных отношений это с неизбежностью привело к так называемому программному пиратству, т. е. к злоумышленному присвоению чужих программ, причем, как в целях присвоения авторства, так и в целях наживы.
 
 Защищаемые программы для ПК могут находиться в ОЗУ, на ГМД и на ЖМД (бумажные носители здесь не рассматриваются, поскольку их защита должна осуществляться традиционными способами и методами). Защита программ, находящихся в ОЗУ и на ЖМД, ничем не отличается от рассмотренной выше защиты от НСД. Поэтому здесь основное внимание сосредоточено на защите от копирования ГМД (дискет), поскольку эта разновидность пиратства получила достаточно широкое распространение, а защита от него носит сугубо специфический характер.
 
 Под системой защиты программы от копирования понимается система, которая обеспечивает выполнение ею своих функций только при опознании некоторого уникального не поддающегося копированию элемента, называемого ключевым. В качестве ключевого элемента могут выступать дискета, определенная часть аппаратуры ПК или специальное устройство, подключаемое к ПК.

Рекомендую Вам также почитать:


  • Восстановление пароля администратора к сайту
  • CSS
  • Ответы на вопросы при регистрации на nowa.cc
  • восстановления системных файлов
  • 25 советов как ускорить систему
  • Параметры установки Windows XP
  • Как заблокировать все возможные угрозы
  • Windows XP и Windows Vista – наращивание возможностей сети
  • Импорт почтовых сообщений из Thunderbird в Outlook
  • Подробнее о BIOS (расшифровка и назначение)

  • Загрузить, скачать Защита, Защита информации в персональных компьютерах бесплатно.
    Скачать Защита информации в персональных компьютерах бесплатно
    Защита информации в персональных компьютерах бесплатно и без регистрации.

    При копировании материала указывайте источник

    Защита информации в персональных компьютерах download free


    Категория: Защита | Просмотров: 14679 | Добавил: Никипольский-Алексей | Теги: защита информации | Рейтинг: 0.0/0
    Всего комментариев: 0
    avatar
    Мои услуги на Kwork
    Like It


    Copyright Алексей Никипольский © 2009 - 2024